BGP
Security Vulnerabilities Analysis

INTERNET DRAFT - draft-ietf-idr-bgp-vuln-00.txt
GSO - FH - Nürnberg
Sicherheit im Internet

Andreas Lorischt
Agenda

1. Introduction
2. Possible Attacks
3. Vulnerabilities and Risks
4. Security Considerations
5. References
Introduction
Introduction: History

- BGP 4 (RFC 1771) specified in March 95
- BGP 3 (RFC 1267) specified in October 91
- Based on EGP (RFC 904) of April 84

- BGP was created when the Internet was much more peaceful than nowadays
- It lacks protection against errors and authentication
Introduction

- BGP is a TCP/IP protocol
 - Subject to TCP/IP attacks like IP Spoofing, Session stealing, etc.
 - Outsiders could inject bogus routing information or disrupt peer to peer communication
 - This new information would spread through peers

- Therefore at least authentication mechanism must be supported (TCP MD5 Signature)
Introduction

- Faulty routing information can be caused by misconfigured peers themselves
 - By masquerading as other legitimate BGP speakers
 - By distributing unauthorized routing information
- Whole portions of the network could become unreachable
- Packets could be forwarded by a suboptimal path or a path that will not forward the traffic
- Therefore traffic could be delayed or misled
Introduction

The damage resulting from attacks might be:

- Starvation
- Network congestion
- Blackhole
- Delay
- Looping
- Eavesdrop
- Partition
- Cut
- Churn
- Instability
- Overload
- Resource exhaustion
Attacks
Attacks

- BGP is subject to the following attacks:
 - **Eavesdropping:**
 - Routing data is carried in cleartext (attacks confidentiality)
 - **Replay:**
 - BGP doesn’t provide any protection against replay attacks
 - **Message Insertion:**
 - No protection against message insertion
 - However if TCP Session is fully established, prediction of the correct session number becomes necessary for the attacker
Attacks

- Further attacks might be:
 - Message deletion:
 - No protection inside BGP
 - Again difficult against mature TCP implementation
 - Message modification:
 - Modifications not altering the length of the payload can not be detected
 - Man-in-the-middle:
 - As BGP has no peer entity authentication, man-in-the-middle attacks are easy to accomplish
Attacks

- Another attack against BGP is the Denial of service attack:
 - Bogus routing data can represent a DoS attack to:
 - End systems trying to transmit data through the network
 - The network infrastructure itself
 - Certain bogus information can represent a DoS attack to the BGP protocol itself:
 - E.g.: advertising large numbers of more specific routes can cause BGP traffic and routing table size to explode
Attacks: Countermeasures

- The protection of BGP using the TCP MD5 signature option (RFC 2385) will counter most of the previously listed attacks from outsiders.
- It will not protect against eavesdropping, but confidentiality of routing data is no goal of BGP.
- Replay attacks will still be possible too, but with TCP sequence number processing it will be hard to accomplish.
- Still no protection against misconfigured legitimate speakers.
Vulnerabilities and Risks
Vulnerabilities and Risks

- There are three major vulnerabilities in BGP:
 - There is no mechanism to proof freshness, protection of integrity and peer authentication in the BGP protocol
 - There is no validation of the authority of an Autonomous System (AS) to announce Network Layer Reachability Information (NLRI)
 - There is no insurance of the authenticity of path attributes announced by an AS
Vulnerabilities and Risks

- The first of these vulnerabilities motivated the support of the TCP MD5 signature in the BGP specification.
- If implemented correctly, it provides message integrity and peer authentication.
- But in the spec. the MD5 algorithm is supposed to be secure (which is not true), and that the shared secret is protected and difficult to guess.
Vulnerabilities and Risks

- There are four different types of BGP messages:
 - OPEN
 - KEEP ALIVE
 - NOTIFICATION
 - UPDATE

- Each of them has its own vulnerabilities, which will be, besides other vulnerabilities, discussed in the following
Vulnerabilities and Risks

- Message Header:
 - Each BGP message starts with a standard header
 - Syntactic errors within the header will cause the connection to be closed, newly learned routes will be deleted and a new decision process about routes will be started
Vulnerabilities and Risks

- OPEN message:
 - Receipt of an OPEN message in state Connect, Active or Established, or receipt of erroneous OPEN messages will cause:
 - Closing of connection
 - Deletion of all associated routes
 - Starting of decision process
 - Return state to idle
 - Receipt of an OPEN message in state OpenSent (spoofing) will cause transition to OpenConfirmed state and the following legitimate OPEN message will be dropped
Vulnerabilities and Risks

- **KEEPALIVE message:**
 - Receipt of a KEEPALIVE message when the peering connection is in the Connect, Active or OpenSent state would cause a transition to the Idle state, and the failing of the connection to be established.

 - To exploit this vulnerability, the KEEPALIVE message must be timed carefully within the exchanged messages.
Vulnerabilities and Risks

- Receipt of a NOTIFICATION message in any state will cause the previously described effects:
 - Closing of connection
 - Deletion of all associated routes
 - Starting of decision process
 - Return state to idle
Vulnerabilities and Risks

- **UPDATE message:**
 - In general, the UPDATE message carries the routing information, therefore the ability to spoof any part of this message will alter the routing tables.
 - Withdrawn Routes field inside an UPDATE message:
 - By modifying this field an attacker could cause the elimination of existing legitimate routes.
 - Reestablished routes could be deleted via replaying a previously recorded withdrawal.
 - But the withdrawal of routes can only be performed by the BGP speaker having formerly announced these routes.
Vulnerabilities and Risks

- UPDATE message continued:
 - The Path Attributes within the UPDATE message present various vulnerabilities and risks:
 - Altering of the AS_PATH attribute could be used to affect routing decisions, and thus mislead traffic to suboptimal routes, to create loops or to gain access to traffic
 - The NEXT_HOP attribute could be modified to disrupt forwarding of traffic between to AS’s, or to force another AS to carry traffic it would otherwise not have to
Vulnerabilities and Risks

- UPDATE message continued:
 - Modifying or forging the NLRI field in the UPDATE message could cause:
 - Disruption of routing to the announced network
 - Overwhelming of a router along the announced route
 - Data loss if the announced route will not forward traffic to the announced network
 - Routing of traffic by a suboptimal route, etc.
 - In general, syntactic malformed UPDATE messages will cause the connection to be closed, associated routes will be deleted, etc., with the previously described effects.
Vulnerabilities and Risks

- Other vulnerabilities arise through the use of the TCP protocol:
 - TCP SYN attack:
 - BGP is vulnerable to SYN flooding as other protocols using TCP
 - An attacker could send a SYN, and a sequence of BGP packets to establish a BGP session, letting the legitimate connection appear as a collision which would be destroyed
 - TCP SYN ACK:
 - If an attacker could answer to a SYN before the legitimate peer, which would receive an empty ACK reply this would finally result in a RST that would break the connection
Vulnerabilities and Risks

- Further spoofed RST or FIN messages would also cause the connection to be broken.

- All these TCP attacks can be countered by the use of BGP session protection via the TCP MD5 signature option.

- DoS and DDoS attacks against BGP are easy to accomplish, because packets directed to port 179 are passed to the BGP process, normally residing on a slower processor.
Security Considerations
Security Considerations

- The use of the 'Protection of BGP Sessions via the TCP MD5 Signature Option' (RFC2385) counters message insertion, message deletion, modification and man-in-the-middle attacks from outsiders and therefore should be used.

- If routing data confidentiality is desired, this could be accomplished using IPSec ESP.

- Both provide security, assuming the algorithms are secure, the used secrets are protected from exposure and not guessable, the platforms are secure, etc.
Security Considerations
Residual Risks

- Protection against attacks arising from legitimate peers could be accomplished through:
 - Origination Protection: sign the originating AS
 - Origination and Adjacency Protection: sign the originating AS and predecessor information
 - Origination and Route Protection: sign the originating AS and remove AS_PATHs of 'bad routers' (Secure-BGP)
 - Filtering: verify AS_PATH and NLRI originating AS via a registry (RFC2725)

- Except of Filtering, which is limited to the 'outscirts' of the internet, none of these is in common use
Security Considerations
Operational Protections

- BGP is used by all major ISPs, to distribute global routing information, internally and between each other.
- Therefore BGP implementations are confronted with huge amounts of traffic, making use of cryptography nearly impossible.
- Protection against DoS attacks can only be achieved using port based packet filtering.
Security Considerations

Operational Protections

- Current practice of the ISPs is the usage of filtering techniques at their borders, reducing exposure to attacks from outside.
- These filters remove the BGP Port Number (179) from traffic destined to the inside, preventing internal peers to be flooded.
- Prevented from injecting sufficient traffic from the outside, attackers have to gain physical access.
References

-BGP Security Vulnerable Analysis
 'draft-ietf-idr-bgp-vuln-00.txt'
 Sandra Murphy – NAI Labs

-A Border Gateway Protocol 4 (BGP-4)
 'draft-ietf-idr-bgp4-20.txt' and RFC1771
 Y. Rekhter, T. Li, S. Hares

-Internetworking Technology Handbook - Cisco Systems

-Protection of BGP Sessions via the TCP MD5 Signature Option
 RFC2385
 A. Heffernan
Thank You!